
Journal of Global Optimization 28: 175–195, 2004. 175
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

NeurodynamicalOptimization

LI-ZHI LIAO1, HOUDUO QI2 and LIQUN QI2
1Department ofMathematics,HongKongBaptistUniversity,KowloonTong,Kowloon,HongKong;
E-mail: liliao@hkbu.edu.hk. 2Department of Applied Mathematics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong; E-mail: mahdqi@polyu.edu.hk

(Received and accepted in revised form 21 January 2003)

Abstract. Dynamical (or ode) system and neural network approaches for optimization have been
co-existed for two decades. The main feature of the two approaches is that a continuous path starting
from the initial point can be generated and eventually the path will converge to the solution. This
feature is quite different from conventional optimization methods where a sequence of points, or
a discrete path, is generated. Even dynamical system and neural network approaches share many
common features and structures, yet a complete comparison for the two approaches has not been
available. In this paper, based on a detailed study on the two approaches, a new approach, termed
neurodynamical approach, is introduced. The new neurodynamical approach combines the attract-
ive features in both dynamical (or ode) system and neural network approaches. In addition, the
new approach suggests a systematic procedure and framework on how to construct a neurodynam-
ical system for both unconstrained and constrained problems. In analyzing the stability issues of
the underlying dynamical (or ode) system, the neurodynamical approach adopts a new strategy,
which avoids the Lyapunov function. Under the framework of this neurodynamical approach, strong
theoretical results as well as promising numerical results are obtained.

Key words: Dynamical system, Neural network, Neurodynamical, Ode System, Optimization

1. Introduction

In this paper, we are interested in finding a local optimum of the following gener-
ally constrained optimization problem:

min
x∈Rn

f �x� (1a)

s�t�g�x��0� (1b)

h�x�=0� (1c)

where functions f Rn→R1, g Rn→Rm, and hRn→Rp have continuous
first order derivatives.
It is very important to observe that the optimization problem (1) itself is posted

in the continuous form, i.e., x can be changed continuously. In the literature, the
necessary and sufficient conditions of a local optimum are also presented in the
continuous form. Furthermore, almost all the theoretical study for problem (1) is
in the continuous form. However, it is very interesting to say that when it comes

176 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

down to the numerical solution of (1), most of the conventional numerical methods,
such as the gradient method, Newton’s method and quasi-Newton’s methods, are
addressed in the discrete form. This interesting situation is mainly due to the fact
that the computer’s computation can be only done discretely. But is it possible to
study both the optimization problem and the solution methods in its original form,
i.e., continuous form? Can strong and attractive theoretical results be obtained for
these new solution methods? How would numerical solutions be obtained in this
way? These questions will be addressed, at least partially, in this paper. Further
and extensive research is much needed to better understand the continuous solu-
tion schemes for (1). It should be noted that we are not the first group to think
about these questions. In the literature, there are many papers that have addressed
these questions, partially or in some way. These papers can be classified into the
following two categories:

• Dynamical system approach. The research in this approach started in 1950s.
In the literature, this approach bears many different names, such as gradient
process [4], differential equation or ode method [1, 2, 6, 12, 13, 14, 62, 26,
47, 48, 68, 76, 49, 74, 75], curvilinear search method [7, 8, 9, 10], continuous
method [16, 22, 58], dynamic method [55, 16], trajectory-following method
[61, 52], and gradient-flow method [60], etc. Here we unify these names as
dynamical system approach. The essence of this approach is to convert prob-
lem (1) into a dynamical system or an ordinary differential equation so that
the solution of problem (1) corresponds to a stable equilibrium point of this
dynamical system. It is worth mentioning that most of the research in this
approach were done by mathematicians. A detailed review on this approach
is given in Section 3.

• Neural network approach. The major breakthrough of this approach was due
to the seminal work of Hopfield [32, 33] in early 1980s. He introduced an
artificial neural network to solve a TSP problem [34]. The mathematical rep-
resentation of his neural network is an ordinary differential equation which
is asymptotically stable at any isolated solution point. A companion of this
neural network is an energy functionwhich is aLyapunov function.He showed
that as time evolves, the solution of the ode will converge to the optimum, and
in this whole process, the energy functionwill decreasemonotonically in time.
The most attractive feature of this approach is that the solution of problem (1)
can be obtained on-line in real-time by constructing an electrical circuit which
represents an artificial neural network. Following Hopfield’s idea, numerous
neural networks have been proposed to solve (1) under some convexity as-
sumptions. Interestingly, most of the research in this approach was done by
engineers. A detailed review on this approach is given in Section 4.

In each of the two approaches, there are more than 30 research articles and
books, however, none of these address, compare and analyze the two approaches in

NEURODYNAMICAL OPTIMIZATION 177

details. In particular, there is no review paper for the dynamical system approach.
Motivated by the strong desire to break the wall between the two approaches and
combine them into a more powerful approach for (1) based on the merits of the two
approaches, this paper attempts to achieve the following three goals:

(i) to review the research results in the dynamical system approach, and identify
the merits of this approach;

(ii) to review the research results in the neural network approach, and identify the
merits of this approach from the mathematical point of view; and

(iii) to propose a new approach, termed neurodynamical approach, which shares
all the merits and remove some limitations of the above two approaches.

The rest of the paper is organized as follows. First some preliminary results and
definitions are provided in Section 2. Detailed reviews on the dynamical system
approach and the neural network approach for optimization problems are presented
in Section 3 and Section 4, respectively. Then the new neurodynamical approach
is introduced in Section 5. Two neurodynamical systems including both theoretical
and simulation results are presented in Section 6. Finally, some concluding remarks
including future research directions are addressed in Section 7.

2. Preliminaries

Consider the following simple dynamical system or ordinary differential equation

dx�t�
dt

=d�x�� (2)

we first state some classical results on the existence and uniqueness of the solution,
and some stability definitions for the dynamical system (2) in [63, 69].

THEOREM 1. [69] Assume that d�x� is a continuous function from Rn to Rn.
Then for arbitrary t0�0 and x0∈Rn there exists a local solution x�t� satisfy-
ing x�t0�=x0�t∈ �t0��� to (2) for some � >t0. If furthermore d�x� is locally
Lipschitz continuous at x0 then the solution is unique, and if d�x� is Lipschitz
continuous in Rn then � can be extended to�.

DEFINITION 1. (Equilibrium point). A point x∗ ∈Rn is called an equilibrium
point of (2) if d�x∗�=0.

DEFINITION 2. (Stability in the sense of Lyapunov). Let x�t� be the solution of
(2). An isolated equilibrium point x∗ is Lyapunov stable if for any x0=x�t0�
and any scalar �>0 there exists a �>0 such that if �x�t0�−x∗�<� then
�x�t�−x∗�<� for t� t0.

DEFINITION 3. (Convergence). Let x�t� be the solution of (2). An isolated equi-
librium point x∗ is convergent if there exists a �>0 such that if �x�t0�−x∗�<�,
x�t�→x∗ as t→�.

178 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

DEFINITION 4. (Asymptotic stability). An isolated equilibrium point x∗ is said
to be asymptotically stable if x∗ is both Lyapunov stable and convergent.

DEFINITION 5. (Lyapunov function). [54] If in a neighborhood of the isolated
equilibrium point x∗, there exists a function V �x� which satisfies: (i) V �x�>0 if
x 	=x∗ and V �x∗�=0; (ii) V �x� has continuous first order partial derivatives;
and (iii) its time derivative along any state trajectory of (2) is non-positive, i.e.
dV/dt�0. Then V �x� is said to be a Lyapunov function for the system (2) at
equilibrium point x∗.

Lyapunov function plays a very important role in the stability analysis of dy-
namical systems and neural network models. Unfortunately, a Lyapunov function
may not always exist for any function d�x� in the ode system (2). This limits many
applications of dynamical system and/or neural network models. In Section 5, we
will show that without using the Lyapunov function, we are still able to conduct
the stability analysis under the framework of the neurodynamical approach.

3. Dynamical system approach

The dynamical system approach for the underlying optimization problem is to
define a dynamical system or an ordinary differential equation so that the solution
of the optimization problem corresponds to a stable equilibrium point of the dy-
namical system. As a result, it is desired that the solution of this dynamical system
forms a continuous path or trajectory which starts at the initial point and ends at the
solution of the original optimization problem. The typical forms of such dynamical
systems in the literature are as follows:

dx�t�

dt
=d�x�t��� (3)

dx�t�

dt
=s�t� ·d�x�t��� (4)

a�t�· d
2x�t�

dt2
+b�t�·B�x�t��· dx�t�

dt
=d�x�t��� (5)

where d�x� is a descent direction for function f �x� in (1a), B�x�∈Rn×n is a
positive definite matrix, a�t� and b�t� are scalar functions in t, and s�t� is a positive
scalar function in t and bounded above.
The research in the dynamical system approach can be traced back to 1950s,

and covers both various types of optimization problems as summarized in Table 1
and different forms of dynamical systems as classified in Table 2. As mentioned
in Section 1, the dynamical system approach for optimization is studied mostly by
mathematicians. This approach normally consists of the following three steps

NEURODYNAMICAL OPTIMIZATION 179

(a) to establish an ode system;
(b) to study the convergence of ode solution x�t� as t→�; and
(c) to solve the ode system numerically.

Table 1. Classification of articles in terms of problem types

Without constraints [4], [7], [8], [9], [10], [55], [13], [52]

System of equations [6], [12], [38], [76], [1], [2], [16], [22], [47]

With equality constraints [68], [14], [48], [49]

With inequality constraints [4], [62]

With general constraints [21], [58], [74], [75]

Table 2. Classification of articles in terms of ode types

Autonomous (3) Non-autonomous

First-order ode (4) Second-order ode (5)

[4], [6], [12], [7], [21], [8], [3], [52] [38], [55], [1], [2], [13]

[9], [10], [58], [68], [76],

[16], [13], [14], [26], [22],

[47], [48], [49], [74], [75]

The establishment of various ode systems in this approach reveals the lack of
some physical motivation, i.e., there is no discussion on how such dynamical sys-
tems were derived. Even [4] mentioned some economic interpretations, and some
ode systems were established based on the classical mechanics [38] and the motion
of a particle of unit mass [55], yet most of dynamical systems were derived simply
from their discrete counterparts in optimization, such as gradient method, Newton’s
method, etc.
The convergence study of x�t� as t→� and the stability of the correspond-

ing dynamical system were mostly addressed on a case by case base, no standard
theory and/or methodology were given. This phenomenon certainly limits the sys-
tematic study of the dynamical system approach and its application potential as
well. Two papers are worth mentioning, one by Tanabe [58] which used the sta-
bility theory of the dynamical system to study the ode system, and the other one
by Yamashita [68] which employed Lyapunov’s direct method to study the ode
system.
Even though the solutions of ode systems are continuous, yet the actual compu-

tation has to be done discretely. In all the dynamical systems (3)–(5), the numerical
solutions were mainly solved by either discrete optimization methods or finite
difference methods such as Euler, Runge–Kutta methods.

180 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

In summary, the main attractiveness of this approach is its simplicity and its ori-
ginality in pursuing the continuous form. Furthermore, there is no any restrictions
on the forms of functions f �x�, g�x� and h�x� in (1).

4. Neural network approach

In many engineering and scientific applications, the real-time solutions of optim-
ization problems are demanded. However, traditional algorithms for digital com-
puters may not be able to provide the solutions on-line in real-time. Therefore, the
search for real-time on-line solutions in such cases becomes not only important but
also essential. In early 1980s, an attractive and very promising approach was intro-
duced to provide real-time on-line solutions for optimization problems. The new
approach, which was pioneered by Hopfield [32, 33, 34, 59], is termed as Hopfield
neural network or simply neural network. Generally speaking, the neural network
approach provides an alternative and attractive way for the solution of optimization
problems. The significant and unique feature of the neural network approach to
optimization is the realization of simple and real-time hardware implementation.
In other words, an electrical circuit can be constructed which generates the on-line
solution of certain optimization problems.
Almost all the early work of neural network approach has strong practical ap-

plication background. In addition, these neural networks are aimed at finding the
global minimizer. As a result, the research was mainly focused on linear program-
ming (LP), quadratic programming (QP) and convex problems as summarized
in Table 3. Additional applications can be found in the books by Cichocki and
Unbehauen [17] and by Zhang [73].

Table 3. Classification of articles in terms of
problem types

LP [59], [45], [71], [70], [65], [18]

QP [57], [43], [11], [64], [66]

Convex [19], [39], [51], [72], [44], [23]

Besides the above types of problems, general optimization problems were also
addressed using the neural network approach. The search is no longer for global
minimum, but includes local minimum. As a matter of fact, numerous neural net-
work models have been developed for various types of optimization problems.
From the optimization point of view, most of existing neural network models for
optimization problems could be divided into two classes. One class is gradient-
based neural network models, which are used for unconstrained optimization prob-
lems. These problems normally come from (a) some kind of transformations from
the constrained minimization problem with penalty function methods [39, 51, 44,
15, 42, 23]; and (b) complementarity problems with NCP functions [40, 41]. The

NEURODYNAMICAL OPTIMIZATION 181

other class is projective gradient based neural network models, which are derived
fromconstrainedminimizationproblemsandcomplementarityproblemswithKKT-
conditions [37, 64, 65, 66, 67] and [72]. The neural network models in [64, 65,
66, 67] for solving linear, quadratic and nonlinear convex programming problems
are based on KKT systems for optimization problems. Their models correspond
to some variants of the projective gradient method for the complementarity prob-
lem and the variational inequality problem [24, 28, 29, 31, 50, 56]. It should be
noted that for Lagrangian conditions with the nonnegative Lagrange multiplier,
if the Lagrange multiplier is penalized or transformed into unrestricted case, the
resulting neural network model belongs to the first class. On the other hand, if the
nonnegative Lagrange multiplier is enforced by projection, it belongs to the second
class.
Generally speaking, the Hopfield neural network is a recurrent neural network

(i.e., a neural network with feedback) which is asymptotically stable at any isol-
ated solution point. A Hopfield neural network model consists of the following
components:

(a) a Lyapunov function as an energy function;

(b) a neural network which is asymptotically stable at any isolated solution point
and is in the form of an ordinary differential equation mathematically; and

(c) a hardware implementation or an architectural neural network diagram with
computer simulation.

Different from the dynamical system approach, every Hopfield neural network
model must have an energy function, which is one of the most important contri-
butions of Hopfield [32]. In the process of system evolution, this energy function
will decrease monotonically and reduce to zero when the system reaches the equi-
librium point. This energy function shares the same spirit as the merit function in
interior point methods for LP. But here the energy function must be a Lyapunov
function.
As mentioned in Section 3 where many dynamical systems normally do not

have any physical meaning, the dynamical systems here are all autonomous and
simply in the form of (3), where d�x�t�� is normally just the negative gradient of
the energy function with respect to x. The physical interpretation of this energy
function and the resulting dynamical system can be viewed as the motion of a
particle on the energy surface under the influence of gravity. From any initial point,
the particle slides downhill until it reaches the bottom of the hill (assume that the
particle has little momentum so that it will stay at the local minimum). In this way,
every local minimizer of the energy function can be thought as an attractor.
The stability analysis for various neural network models has been addressed in

the literature, see [11, 15, 23, 39, 43, 42, 64, 72]. However, all these discussions
are based on Lyapunov’s direct method which requires the existence of a Lyapunov
function. Unfortunately, a Lyapunov function may not always exist. This certainly
limits the stability analysis for a general neural network model.

182 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

The hardware realization of a neural network ensures that the solution of the
underlying optimization problemcan be obtained on-line in real-time. However,
only certain functions can be achieved by neural network units due to the hardware
limitation. For those problems where nonlinear functions are engaged, certain non-
linear artificial neurons must be required. Table 4 summarizes the basic or typical
nonlinear functions, also called activation functions, used in neural networks in the
literature. For a more complete list, please see Appendix B in [17].

Table 4. A list of the basic or typical nonlinear functions used in neural
networks

Sigmoid function ��x�= 1−e−2�x

1+e−2�x or ��x�= 1
1+e−�x

Hard limiter (signum function) ��x�=

1 ifx�0

−1 ifx<0

Saturation limiter ��x�=

1 ifx�1

x if−1<x<1

−1 ifx�−1

Simple limiter ��x�=

x ifx�0

0 ifx<0

Quadratic function ��x�=

x2 ifx�0

0 ifx<0

Absolute value function ��x�=x
Continuous-time integrator y�t�=y�0�+∫ t

0 x���d�

In late 1980s, some significant achievements have been obtained in artificial
neural network. Refs. [20] and [36] have shown that continuous functions on com-
pact subset of Rn can be uniformly well approximated by linear combinations of
sigmoidal functions. In addition, [35] reported that under very general conditions,
networks with sufficiently smooth activation functions are capable of arbitrarily
accurate approximation to a function and its derivatives. To further extend the
study to a quantitative scale, Barron [5] examined how the approximation error is
related to the number of nodes in the network. It is shown in [5] that feedforward
networks with one layer of sigmoidal nonlinearities can achieve integrated squared
error of order O�1/N�, where N is the number of nodes. Certainly, neural network
learning, which is becoming a very important part of artificial neural networks,
must be employed in these approximations.
Another but very important feature of the neural network approach is that its

formulation is naturally suited for massive parallel processing. As a matter of fact,
the computation in the neural network approach is normally carried out in parallel.
Generally speaking, the number of computational units could be in the same order

NEURODYNAMICAL OPTIMIZATION 183

of the number of unknown variables. Furthermore, this scaling can be done without
any additional work.

5. Neurodynamical approach

The term, neurodynamics, is not new. In [27], an entire chapter is devoted to the
discussion of neurodynamics. But Lyapunov’s direct method was used to address
the stability issue. To avoid using the Lyapunov function and combine the merits
of both dynamical system and neural network approaches, a new approach, called
neurodynamical approach, is introduced in this section to solve problem (1).
Based on the analysis and discussion in previous two sections, we can see that

the main merit of the dynamical system approach is that many dynamical systems
can be constructed based on optimization methods, i.e., these dynamical systems
can be viewed as the continuous realization of many optimization methods. On the
other hand, the main mathematical merit of the neural network approach lies in the
formulation of the energy function which decreases monotonically in time along
the solution of the underlying dynamical system. This energy function enables a
systematic study of the stability analysis for dynamical systems.

5.1. FRAMEWORK OF A NEURODYNAMICAL SYSTEM

In the proposing neurodynamical approach, we require each neurodynamical sys-
tem to have the following features:

Framework of a neurodynamical system

(N1) A merit function, say V �x�, which may not be a Lyapunov function but is
bounded below, and a dynamical (or ode) system must be constructed.

(N2) The dynamical (or ode) system must be asymptotically stable at any isolated
solution point of problem (1).

(N3) dV �x�t��

dt =�#xV �x�t��T dx�t�
dt �0 for all t�0 and dV �x�t��

dt =0 if and
only if dx�t�

dt =0, where x�t� is a solution of the dynamical (or ode) system
established in (N1).

(N4) Each equilibrium point of the dynamical (or ode) system must correspond to
a (constrained) stationary point of problem (1).

Remarks.

(a) The V �x� and the ode system for each problem are not unique but they must
satisfy the above requirements.

(b) The analytical solution x�t� of the ode system is not sought. Only the limit
point of x�t� is interested.

184 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

(c) The stability analysis in both dynamical systemandneural network approaches
adopts Lyapunov’s direct method, which relies on the Lyapunov function.
Here, we remove the restriction of the Lyapunov function, as a result, we are
ableto both analyze a much wider range of dynamical systems and simplify
the analysis.

(d) In the stability analysis of Lyapunov’s direct method, the equilibrium point
must be known beforehand. However, in our new neurodynamical system, no
Lyapunov function is needed, therefore we do not need any prior information
on the equilibrium point. This is very attractive since normally the equilibrium
point is the one that we are going to find.

(e) The dynamical (or ode) system is not just limited to any form of (3)–(5). This
is because some time-delay dynamical (or ode) systems may also be available
as a result of quasi-Newton directions.

(f) The hardware (circuit) implementation is not required in the above features.
This is mainly due to the fact that any continuous function on a compact
set can be uniformly well approximated by linear combinations of sigmoidal
functions as stated in Section 4. Certainly large number of neurons may be
required for a very nonlinear function, but this is beyond the scope of this
paper.

5.2. GENERAL PROPERTIES

In this subsection, we will explore some general properties for a neurodynamical
system. Theorem 1 has guaranteed that if d�x� is Lipschitz continuous, the solution
of (2) exists and is unique. First, let’s state the following Barbalat’s lemma which
is very useful in our stability analysis.
Barbalat’s Lemma [54] If a differentiable function V �t� has a finite limit as t→
�, and dV �t�

dt
is uniformly continuous, then dV �t�

dt
→0 as t→�.

Theorem 2 below states a general property for the ode system (2).

THEOREM 2. Assume that (i) V �x�∈C1�Rn� is bounded below, (ii) there exists
constants &�'>0 such that −�#V �x��Td�x��'�#V�x��2 and �d�x���
&�#V�x�� ∀x∈Rn, and (iii) d�x� and #V�x� are Lipschitz continuous in Rn.
Then for any t0�0 and x�t0�=x0, #V�x�t��→0. Therefore d�x�t��→0 as
t→�, where x�t� is the solution of (2).

Proof: Since d�x� is Lipschitz continuous, Theorem 1 ensures that for any t0�0
and x�t0�=x0, there exists a unique solution to the ode system (2). The as-
sumptions of V �x� being bounded below and −�#V �x��Td�x��'�#V�x��2
imply that V �x�t�� is monotonically decreasing along the trajectory x�t� in t if
#V�x�t�� 	=0. Therefore, there exists a finite scalar V ∗ such that limt→�V �x�t��=

NEURODYNAMICAL OPTIMIZATION 185

V ∗. Then

V �x0�−V ∗=−
∫ �

t0

�#V �x�t���Td�x�t��dt�'
∫ �

t0

�#V�x�t���2dt�
Following exactly the same arguments as in the proof of Theorem 4 in [25], we
have that there exists a constant L such that

�#V�x�t����L ∀t∈ �t0���� (6)

Then for any t1� t2∈ �t0���,

dV �x�t1��

dt
− dV �x�t2��

dt
=�#V �x�t1���

Td�x�t1��−�#V �x�t2���
Td�x�t2��

� �#V �x�t1���
Td�x�t1��−�#V �x�t1���

Td�x�t2��
+�#V �x�t1���

Td�x�t2��−�#V �x�t2���
Td�x�t2��

�L�d�x�t1��−d�x�t2���+& ·L�#V�x�t1��

−#V�x�t2���
��L·L1+&·L·L2��x�t1�−x�t2��
��L·L1+&·L·L2��

∫ t2

t1

d�x����d��
��L·L1+&·L·L2�&·Lt1−t2� (7)

where L1 and L2 are the Lipschitz constants for d�x� and #V�x�, respectively.
So dV �x�t��

dt
is uniformly continuous in �t0���. From Barbalat’s lemma and the

assumption (ii), we have

lim
t→�

#V�x�t��=0� therefore lim
t→�

d�x�t��=0� (8)

This completes our proof. �

The result of Theorem 2 is quite general. Essentially, it says that if d�x� is a
strictly descent direction for V �x�, then any limit point of the solution of (2) is
a stationary point of V �x� under fairly general assumptions. Theorem 2 is a little
short of proving the convergence of x�t�. This convergence result is very desirable
but it is difficult to obtain. In Section 6, we will state this result in the case of
d�x�=−#V�x� for unconstrained problems.
The following Theorem 3 reveals that if d�x�t0�� 	=0, then d�x�t�� 	=0 for all

t∈ �t0���.

THEOREM 3. UnderthesameassumptionsasTheorem2,wehavethatifd�x�t0�� 	=
0, then d�x�t�� 	=0 for all t∈ �t0���. Therefore, #V�x�t�� 	=0 for all t∈
�t0���.

Proof. It is easy to see that d�x�t�� is continuous in t under the assumptions.
Suppose that there exists a t̄ >t0 such that d�x�t̄��=0. From the continuity
of d�x�t��, we can assume that t̄ is the smallest t such that d�x�t��=0.

186 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

From the proof of Theorem 2, we know that (6) is true and therefore

�d�x�t����&·L ∀t� t0�

Let L1 be the Lipschitz constant for d�x� and � be any constant with �∈�0� 1
2L1

).
Now we focus on the interval �t̄−��t̄). Then for any t1� t2∈ �t̄−��t̄), we have

�d�x�t1���−�d�x�t2��� � L1�x�t1�−x�t2��
� L1�

∫ t2

t1

d�x���d��
� L1 ·� max

�∈�t̄−��t̄)
�d�x������ (9)

Notice that (9) is true for any t1� t2∈ �t̄−��t̄) and d�x�t̄��=0, then we have

0= min
�∈�t̄−��t̄)

�d�x�������1−L1 ·�� max
�∈�t̄−��t̄)

�d�x������ (10)

This implies that d�x����=0 for any � ∈ �t̄−��t̄) which contradicts with the
definition of t̄. This completes the proof. �

In conventional optimization methods, finite step termination can happen in
some solution schemes. But the result of Theorem 3 indicates that finite step ter-
mination will not happen in the neurodynamical approach. Consider a very simple
function of f �x�= 1

2x
2 and the ode system dx�t�

dt =−x�t�. It is easy to get the
analytical solution of the ode system x�t�=x0e

−�t−t0�. Therefore for any t� t0,
x�t� 	=0 if x0 	=0.

6. Some neurodynamical systems

In this section, two neurodynamical systems will be presented based on the frame-
work established in Section 5 for both unconstrained and constrained problems.

6.1. A. STEEPEST DESCENT DIRECTION FOR UNCONSTRAINED PROBLEMS

If V �x�=f �x� and d�x�=−#V�x�, the right-hand-side of (2) corresponds to the
steepest descent direction. This is the most common case. A detailed study of this
dynamical system is provided in [25]. The following theorem from [25] guarantees
the asymptotic stability of this dynamical system at any isolated solution point.

THEOREM 4 (Theorem 4 in [25].). If V �x� is bounded below and its gradient
#V�x� is Lipschitz continuous in Rn, then for any initial point x0, the trajectory
x�t� of the system (2), satisfying x�t0�=x0, will converge to an equilibrium point
of the neural network (2) as t→�.

The result of Theorem 4 is very strong. It guarantees the convergence of x�t�,
the solution of (2), as t→�. It should be noted that in the above result the

NEURODYNAMICAL OPTIMIZATION 187

infinity point has been viewed as an ordinary point in Rn in such a way that for
every d � 	=0�� x∈Rn, x+'d approaches to it as '→�.

THEOREM 5. For unconstrained problem (1a), if f �x� is bounded below and its
gradient #f�x� is Lipschitz continuous in Rn, then the system of V �x�=f �x�
and (2) with d�x�=−#V�x� is a neurodynamical system.

Proof. Since f �x� is bounded below and the ode system (2) is well defined with
d�x�=−#V�x�, (N1) is satisfied. While Theorem 4 ensures the asymptotic sta-
bility of (2) with d�x�=−#V�x� at any isolated solution point. Therefore (N2) is
met.
Finally, due to dV �x�

dt =−�#V�x��2 and V �x�=f �x�, (N3) and (N4) can be
easily verified. This completes the proof. �

6.2. B. NEWTON’S DIRECTION FOR UNCONSTRAINED PROBLEMS

Newton’s method is perhaps the most important method in optimization. The study
of Newton’s method has been quite rich in the literature. However, in the frame-
work of the neurodynamical approach, Newton’s direction has surely brought out
many new challenges. Let V �x�=f �x�, based on Newton’s direction, the right-
hand vector d�x� in (2) can be defined as

d�x�=
{−�# 2V �x�)−1#V�x� if ��# 2V �x����>0�
−#V�x� otherwise�

(11)

where ��·� denotes the minimum eigenvalue of the underlying matrix. Then two
problems emerge:
1. First, the d�x� in (11) is not continuous. Therefore, the existence of a solution

x�t� to (2) needs to be justified.
2. Second, the computation of d�x� in (11) is much more expensive than the

d�x� in the steepest descent direction. Whether the faster convergence of New-
ton’s direction could compensate this extra computational load remains to be
investigated.

To compare the numerical performance of the steepest descent direction and New-
ton’s direction in (11) and also illustrate the numerical implementation of our
neurodynamical approach, we apply the system (2) to the following common test
examples in the literature.
Example 1. Powell badly scaled function [46]{

f �x�=�104x1x2−1�2+�exp�−x1�+exp�−x2�−1�0001�2�
x0=�0�1�� x∗=�1�098···10−5�9�0106···�� f �x∗�=0�

Example 2. Extended Rosenbrock function [46]{
f �x�=∑n

i=1

[
100�x2i−x2

2i−1�
2+�1−x2i−1�

2
]
�

�x0)2i−1=−1�2� �x0)2i=1� x∗=�1�··· �1�T � f �x∗�=0�

188 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

In our simulation experiment, we tested �=10−10 and 10−20 for Newton’s
direction, and n=10 in Example 2. Our simulation will stop if �#f�x���10−8.
Our simulation was implemented on a HP workstation (Model J5600) with Matlab
6.0. The ode solver used is ode23s. The minimum eigenvalue routine used in (11)
is the modified Cholesky factorization scheme in [53]. Our simulation results are
summarized in Table 5.

Table 5. Simulation results of Examples 1 and 2

SD Example 1 Example 2

f #f CPU (s) f #f� CPU (s)

1.34e-28 1.96e-9 0.5 1.11e-16 9.40e-9 4.3

Newton

�=1.e-10 1.34e-28 1.96e-9 1.4 3.27e-18 3.04e-9 30

�=1.e-20 2.12e-26 7.20e-9 1.4 3.27e-18 3.04e-9 30

The results in Table 6.2 indicate that for the two examples, the matrix opera-
tion for Newton’s direction really has slowed down the performance of Newton’s
method. More discussions on the related issues will be addressed in Section 7.

6.3. C. PROBLEMS WITH CONVEX SET CONSTRAINTS

Here we focus on the following form of problems:

min
x∈Rn

f �x� (12)

s�t�x∈*� (13)

where* is a closed and convex set. In particular, the common cases for* are: (a)
*=+x∈Rn a�x�b, (bound constraint), (b) *=+x∈Rn �x�2�c, (ball
or l2 norm constraint), and (c)*=+x∈Rn ∑n

i=1 xi�d, (l1 norm constraint).
To establish a neurodynamical system for (12)–(13), we define V �x�=f �x�

and the following dynamical system:

dx�t�

dt
=−�x−P*�x−#f�x��)� (14)

where P*�·� is the projection operator onto *. To ease the following discussion,
we define

e�x�=x−P*�x−#f�x��� (15)

LEMMA 1. For problem (12)–(13) and the ode system (14), if x�t0�=x0∈*,
then the solution x�t� of (14) is always feasible, i.e. x�t�∈*∀t� t0.

NEURODYNAMICAL OPTIMIZATION 189

Proof. It is sufficient to show that−e�x� is a feasible direction for* at x providing
x∈*.
For any ��0, we define

x�=x+��−e�x���

Then

x�=�1−��x+P*���x−#f�x��)� (16)

Since x� P*�x−#f�x��∈* and* is a closed convex set, we know that �1−��x+
�P*�x−#f�x��∈* ∀�∈ �0�1). Therefore (16) indicates that x�∈* ∀�∈ �0�1).
Thus−e�x� is a feasible direction for* at x providing x∈*. �

The result of Lemma 1 guarantees that the solution x�t� of (14) always stays in
*. Therefore, in the rest discussion for problem (12)–(13) and the ode system (14),
we only concentrate on*.

LEMMA 2. For problem (12)–(13), if #f�x� is Lipschitz continuous in *, then
e�x� is also Lipschitz continuous in*.

Proof. Let Lf be the Lipschitz constant for #f�x�. Then from (15), we have

�e�x�−e�y����x−y�+�P*�x−#f�x��−P*�y−#f�y��� ∀x� y∈Rn�
(17)

Since * is a closed convex set, from the non-expansive property of the projection
operator, we have

�P*�x�−P*�y����x−y� ∀x� y∈Rn� (18)

Using (18), (17) becomes

�e�x�−e�y�� � �x−y�+��x−#f�x��−�y−#f�y���
� 2�x−y�+�#f�x�−#f�y��
� �2+Lf ��x−y�� (19)

Therefore e�x� is Lipschitz continuous in*. �

Lemma 2 and Theorem 1 guarantee that the ode system (14) has a unique
solution x�t� for any initial solution x0∈* if #f�x� is Lipschitz continuous
in*.

LEMMA 3. For problem (12)–(13) and the ode system (14), if x�t0�=x0∈*,
then we have

�#f �x��T e�x���e�x��2�0� (20)

190 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

Proof. Since* is a closed convex set, from inequality (4) in [30], we have

�y−P*�y�)
T �x−P*�y�)�0 ∀x∈*� ∀y∈Rn� (21)

Taking y=x−#f�x� in (21), we have

�e�x�−#f�x�)T e�x��0� (22)

This proves (20). �

If x∗ is a local minimum point of problem (12)–(13), then the intersection of
any feasible direction and any descent direction at x∗ is empty. In the case that
f �x� is differentiable on an open set which includes*, this can be written as

x∗ ∈*� �x−x∗�T#f �x∗��0 ∀x∈*� (23)

The following lemma states an equivalent condition for (23).

LEMMA 4. For problem (12)–(13), x∗ satisfies (23) if and only if x∗ is a zero
point of e�x�.

Proof. See the proof of Theorem 1 in [30]. �

It is worth mentioning that in our discussion on the steepest descent direction based
neurodynamical system, the level set

L�x0�=+x∈*f �x��f �x0�, (24)

couldbeunbounded.Butforproblemswithconstraints,wemustrequire thebounded-
ness of the level set L�x0�. Now we are ready to prove the convergence of e�x�.

THEOREM 6. Forproblem(12)–(13)andtheodesystem(14), if#f�x� isLipschitz
continuous in* and L�x0� is bounded for any x0∈*, then for any initial solution
x�t0�=x0∈*, any limit point of the solution x�t� of the ode system (14) is an
equilibrium point of (14), i.e.

lim
t→�

e�x�t��=0� (25)

Proof. Since x�t0�=x0∈*, we know from Lemma 1 that any solution of the ode
system (14) will stay in *. The Lipschitz continuity of e�x� in Lemma 2 ensures
that the solution x�t� of the ode system (14) exists and is unique from Theorem
1. Since L�x0� is bounded, we know that both �#f�x�� and e�x� are bounded in
*. Following the similar discussions as in the proof of Theorem 2, we can prove
that df �x�

dt is uniformly continuous in �t0���. From Barbalat’s lemma, df �x�
dt =

−�#f �x��T e�x�, and Lemma 3, we can establish (25). �

The following theorem states that for problem (12)–(13), V �x�=f �x� and the
ode system (14) constitute a neurodynamical system.

NEURODYNAMICAL OPTIMIZATION 191

THEOREM 7. For problem (12)–(13), if its gradient #f�x� is Lipschitz continu-
ous in * and L�x0� is bounded for any x0∈*, then the system of V �x�=f �x�
and (14) is a neurodynamical system.

Proof. From our assumptions and previous discussions, we know that the ode sys-
tem (14) is well defined. In addition, From V �x�=f �x�, Lemma 1 and L�x0�
being bounded, we can easily see that f �x� is bounded in *. Therefore (N1) is
true.
Let x∗ be any isolated solution point of (12)–(13), then Theorem 6, Lemma

4 and the proof of Theorem 4 in [25] guarantee that x∗ is asymptotically stable.
Therefore (N2) is met.
Notice that dV �x�

dt =−�#f �x��T e�x��−�e�x��2�0 (Lemma 3), then (N3)
can be established easily.
Finally, Lemma 4 ensures that (N4) is true as well. This completes the proof. �
It should be noted that the assumption of level set L�x0� being bounded can be

removed if* is bounded.

7. Concluding remarks

In this paper, based on thorough reviews on both dynamical system and neural net-
work approaches for optimization, a neurodynamical approach is proposed for gen-
eral optimization problems. The framework set out in Section 5 for the neurodynam-
ical approach combines the merits of the previous two approaches and allows a rig-
orousandsystematiccontinuouspathstudyforoptimization.Using theneurodynam-
ical approach, good and attractive theoretical results have been obtained under
very mild assumptions. In addition, two neurodynamical systems are established,
one for unconstrained problems and one for convex set constrained problems.
These two neurodynamical systems have illustrated many attractive features for
the neurodynamical approach.

7.1. FUTURE RESEARCH DIRECTIONS

Our study on the neurodynamical approach for optimization is just starting. There
are many interesting and important issues remain to be investigated. We list some
of them here:

(i) We anticipate that the solution of any neurodynamical system should con-
verge to an equilibrium point of the underlying ode system. For unconstrained
problems, this result has been proved in [25] for the gradient direction. But a
general result remains to be investigated.

(ii) General nonlinear constrained problem represents the hard core in optimiz-
ation. A neurodynamical system for such problem is needed to consolidate
the power and attractiveness of the neurodynamical approach. This has been
under investigation by the authors.

192 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

(iii) Looking at the two neurodynamical systems established in Section 6, there is
no matrix operation. This is certainly very attractive for large-scale problems.
However, can the numerical ode solvers cope with such feature? This should
post new challenges for the large-scale numerical ode solvers.

8. Acknowledgements

The research of Li-Zhi Liao is supported in part by grants FRG/99-00/II-23 and
FRG/00-01/II-63 of Hong Kong Baptist University. The research of Liqun Qi is
supported in part by the Research Grant Council of Hong Kong.

References

1. Aluffi-Pentini, F., Parisi, V. and Zirilli, F. (1984), A differential-equations algorithm for
nonlinear equations, ACM Trans. on Math. Software 10 (3), 299–316.

2. Aluffi-Pentini, F., Parisi, V. and Zirilli, F. (1984) Algorithm 617 DAFNE: A differential-
equations algorithm for nonlinear equations, ACM Trans. on Math. Software, 10 (3), 317–324.

3. Anstreicher, K. M. (1988), Linear programming and the Newton barrier flow, Math. Prog. 41,
367–373.

4. Arrow, K. J., Hurwicz, L. and Uzawa, H. (1958), Studies in Linear and Nonlinear Program-
ming, Stanford University Press, Stanford, CA.

5. Barron, A. R. (1993), Universal approximation bounds for superpositions of a sigmoidal
function, IEEE Trans. Inform. Theory 39 (3), 930–945.

6. Boggs, P. T. (1971), The solution of nonlinear systems of equations by A-stable integration
techniques, SIAM J. Numer. Anal. 8 (4), 767–785.

7. Botsaris, C. A. and Jacobson, D. H. (1976), A Newton-type curvilinear search method for
optimization, JMAA, 54, 217–229.

8. Botsaris, C. A. (1978), Differential gradient methods, JMAA 63, 177–198.
9. Botsaris, C. A. (1978), A curvilinear optimization method based upon iterative estimation of

the eigensystem of the Hessian matrix, JMAA 63, 396–411.
10. Botsaris, C. A. (1978), A class of methods for unconstrained minimization based on stable

numerical integration techniques, JMAA 63, 729–749.
11. Bouzerdoum, A. and Pattison, T. R. (1993), Neural network for quadratic optimization with

bound constrains, IEEE Trans. Neural Networks 4, 293–304.
12. Branin, Jr. F. H., (1972), Widely convergent method for finding multiple solutions of simultan-

eous nonlinear equations, IBM Journal of Research and Development 16, 504–522.
13. Brown, A. A. and Bartholomew-Biggs, M. C. (1989), Some effective methods for uncon-

strained optimization based on the solution of systems of ordinary differential equations, JOTA
62 (2), 211–224.

14. Brown, A. A. and Bartholomew-Biggs, M. C. (1989), ODE versus SQP methods for constrained
optimization, JOTA 62 (3), 371–386.

15. Chen, Y. H. and Fang, S. C. (1998), Solving convex programming problem with equality
constraints by neural networks, Computers Math. Appl. 36, 41–68.

16. Chu, M. T. (1988), On the continuous realization of iterative processes, SIAM Review 30 (3),
375–387.

17. Cichocki, A. and Unbehauen, R. (1993), Neural Networks for Optimization and Signal
Processing. Wiley, Chichester.

NEURODYNAMICAL OPTIMIZATION 193

18. Cichocki, A., Unbehauen, R., Weinzierl, K. and Holzel, R., (1996), A new neural network for
solving linear programming problems, European J. Operational Res., 93, 244–256.

19. Chua, L. O. and Lin, G. N. (1984), Nonlinear programming without computation, IEEE Trans.
Circuits Syst., 31, 182–188.

20. Cybenko, G. (1989), Approximation by superpositions of a sigmoidal function, Math. Control
Signals Systems, 2, 303–314.

21. Evtushenko, Yu. G. and Zhadan, V. G., (1978), A relaxation method for solving problems of
non-linear programming, U.S.S.R. Comput. Math. Math. Phys. 17 (4), 73–87.

22. Diener, I. and Schaback, R., (1990), An extended continuous Newton method, JOTA 67 (1),
57–77.

23. Glazos, M. P., Hui, S. and Żak, S., (1998), Sliding modes in solving convex programming
problems, SIAM J. Control Optim. 36, 680–697.

24. Goldstein, A. A. (1964), Convex programming in Hilbert space, Bulletin of American Mathem-
atical Society 70, 709–710.

25. Han, Q., Liao, L.-Z., Qi, H. and Qi, L., (2001), Stability analysis of gradient-based neural
networks for optimization problems, J. Global Optim. 19 (4), 363–381.

26. Hassan, N. and Rzymowski, W., (1990), An ordinary differential equation in nonlinear
programming, Nonlinear Analysis, Theory, Method & Applications 15 (7), 597–599.

27. Haykin, S. S., (1994), Neural Networks: A Comprehensive Foundation, Prentice-Hall, Engle-
wood Cliffs, NJ.

28. He, B. S., (1994), Solving a class of linear projection equations, Numerische Mathematik 68,
71–80.

29. He, B. S., (1997), A class of projection and contraction methods for monotone variational
inequalities, Applied Mathematics and Optimization 35, 69–76.

30. He, B. S., (1999), Inexact implicit methods for monotone general variational inequalities,
Mathematical Programming, 86 (1), 199–217.

31. He, B. S. and Yang H., (2000) A neural network model for monotone linear asymmetric
variational inequalities, IEEE Trans. Neural Networks, 11, 3–16.

32. Hopfield, J. J., (1982), Neural networks and physical systems with emergent collective
computational ability, Proc. Natl. Acad. Sci. USA, 79, 2554–2558.

33. Hopfield, J. J., (1984), Neurons with graded response have collective computational properties
like those of two-state neurons, Proc. Natl. Acad. Sci., 81, 3088–3092.

34. Hopfield, J. J. and Tank, D. W., (1985), Neural computation of decisions in optimization
problems, Biolog. Cybernetics, 52, 141–152.

35. Hornik, K., (1991), Approximation capabilities of multilayer feedforward networks, Neural
Networks, 4, 251–257.

36. Hornik, K., Stinchcombe, M. and White, H., (1989), Multilayer feedforward networks are
universal approximators, Neural Networks, 2, 359–366.

37. Hou, Z.-G., Wu, C.-P. and Bao, P., (1998), A neural network for hierarchical optimization of
nonlinear large-scale systems, International Journal of Systems Science 29 (2), 159–166.

38. Incerti, S., Parisi, V. and Zirilli, F., (1979), A new method for solving nonlinear simultaneous
equations, SIAM J. Numer. Anal. 16, 779–789.

39. Kennedy, M. P. and Chua, L. O., (1988), Neural networks for nonlinear programming, IEEE
Trans. Circuits Syst. 35, 554–562.

40. Liao, L.-Z. and Qi, H., (1999), A neural network for the linear complementarity problem,Math.
Comput. Modelling 29 (3), 9–18.

41. Liao, L.-Z., Qi, H. and Qi, L., (2001), Solving nonlinear complementarity problems with neural
networks: a reformulation method approach, JCAM 131 (12), 343–359.

42. Lillo, W. E., Loh, M. H., Hui S. and Zak, S. H., (1993), On solving constrained optimization
problems with neural networks: a penalty method approach, IEEE Trans. Neural Networks, 4,
931–940.

194 LI-ZHI LIAO, HOUDUO QI AND LIQUN QI

43. Maa, C. Y. and Shanblatt, M. A., (1992), Linear and quadratic programming neural network
analysis, IEEE Trans. Neural Networks 3, 580–594.

44. Maa, C. Y. and Shanblatt, M. A., (1992), A two-phase optimization neural network, IEEE
Trans. Neural Networks 3, 1003–1009.

45. Mangasarian, O. L., (1993), Mathematical programming in neural networks, ORSA J. Comput.
5 (4), 349–360.

46. Moré, J. J., Garbow, B. S. and Hillstrom, K. E., (1981), Testing unconstrained optimization
software, ACM Trans. Math. Software 7 (1), 17–41.

47. Novaković, Z. R., (1990), Solving systems of non-linear equations using the Lyapunov direct
method, Computers Math. Applic. 20 (12), 19–23.

48. Pan, P.-Q., (1992), New ODE methods for equality constrained optimization (1) – equations,
JCM 10 (1), 77–92.

49. Pan, P.-Q., (1992), New ODE methods for equality constrained optimization (2) – algorithms,
JCM 10 (2), 129–146.

50. Polyak, B. T., (1966), Constrained minimization problems, USSR Computational Mathematics
and Mathematical Physics 6, 1–50.

51. Rodríguez-Vázquez, A., Domínguez-Castro, R., Rueda, A., Huertas J. L. and Sánchez-
Sinencio, E., (1990), Nonlinear switch-capacitor ‘neural’ networks for optimization problems,
IEEE Trans. Circuits Syst. 37, 384–398.

52. Schäffler, S. and Warsitz, H., (1990), A trajectory-following method for unconstrained optim-
ization, JOTA 67 (1), 133–140.

53. Schnabel, R. B. and Eskow, E., (1990), A new modified Cholesky factorization, SIAM J. Sci.
Stat. Comput. 11, 1136–1158.

54. Slotine, J.-J. E. and Li, W., (1991), Applied Nonlinear Control, Prentice-Hall, Englewood
Cliffs, NJ.

55. Snyman, J. A., (1982), A new and dynamic method for unconstrained minimization, Appl.
Math. Modelling 6, 449–462.

56. Solodov, M. V. and Tseng, P., (1996), Modified projection-type methods for monotone
variational inequalities, SIAM J. Control and Optimization 34, 1814–1830.

57. Sudharsanan, S. and Sundareshan, M., (1991), Exponential stability and a systematic synthesis
of a neural network for quadratic minimization, Neural Networks 4, 599–613.

58. Tanabe, K., (1980), A geometric method in nonlinear programming, JOTA 30 (2), 181–210.
59. Tank, D. W. and Hopfield, J. J., (1986), Simple neural optimization networks: An A/D convert,

signal decision circuit, and a linear programming circuit, IEEE Trans. Circuits Syst. 33, 533–
541.

60. Teo, K. L., Wong, K. H. and Yan, W. Y., (1995), Gradient-flow approach for computing a
nonlinear-quadratic optimal-output feedback gain matrix, JOTA 85, 75–96.

61. Vincent, T. L., Goh, B. S. and Teo, K. L., (1992), Trajectory-following algorithms for min-max
optimization problems, JOTA 75, 501–519.

62. Wilde, N. G., (1969), A note on a differential equation approach to nonlinear programming,
Management Science 15 (11), 739–739.

63. Williems, J. L., (1970), Stability Theory of Dynamical Systems, Nelson.
64. Wu, X., Xia, Y., Li, J. and Chen, W. K., (1996), A high performance neural network for solving

linear and quadratic programming problems, IEEE Trans. Neural Networks, 7, 643–651.
65. Xia, Y., (1996), A new neural network for solving linear programming problems and its

applications, IEEE Trans. Neural Networks 7, 525–529.
66. Xia, Y., (1996) A new neural network for solving linear and quadratic programming problems,

IEEE Trans. Neural Networks 7, 1544–1547.
67. Xia, Y. and Wang, J., (1998), A general methodology for designing globally convergent

optimization neural networks, IEEE Trans. Neural Networks 9, 1331–1343.

NEURODYNAMICAL OPTIMIZATION 195

68. Yamashita, H., (1980), A differential equation approach to nonlinear programming,Math. Prog.
18, 155–168.

69. Zabczyk, J., (1992), Mathematical Control Theory: An Introduction, Birkhauser, Boston.
70. Żak, S. H., Upatising, V. and Hui, S., (1995) Solving linear programming problems with neural

networks: a comparative study, IEEE Trans. Neural Networks 6, 94–104.
71. Żak, S. H., Upatising, V., Lillo, W. E. and Hui, S., (1994), A dynamical systems approach to

solving linear programming problems. In: K. D. Elworthy, W. N. Everitt and E. B. Lee (eds.),
Differential Equations, Dynamical Systems, and Control Science, Marcel Dekker, New York.

72. Zhang, S. and Constantinides, A. G., (1992), Lagrange programming neural network, IEEE
Trans. Circuits Syst. 39, 441–452.

73. Zhang, X.-S., (2000), Neural Network in Optimization, Kluwer Academic Publishers,
Dordrecht.

74. Zhou, Z. and Shi, Y., (1997), An ODE method of solving nonlinear programming, Computers
Math. Applic. 34 (1), 97–102.

75. Zhou, Z. and Shi, Y., (1998), A convergence of ODE method in constrained optimization, JMAA
218 (1), 297–307.

76. Zirilli, F., (1982), The use of ordinary differential equations in the solution of nonlinear systems
of equations, Powell, M. J. D., (ed.) Nonlinear Optimization 1981, Academic Press, London.

